Learning with Noisy Labels for Robust Point Cloud Segmentation

Shuquan Ye1 Dongdong Chen2 Songfang Han3 Jing Liao1

1City University of Hong Kong, 2Microsoft Cloud AI, 3University of California

PNAL Framework

Warm-up Stage
- According to the study of memorization effects, in the presence of noisy labels, DNNs are prone to learn clean, easy samples first. Therefore, in the warm-up stage, we train the network with a common cross-entropy loss.

Noise Cleaning Stage
- Point-Level Confidence Selection aims to select reliable samples from each mini-batch and obtain the confidential labels for these samples that can be corrected with high probability. In detail, a sample with consistent label prediction history is regarded as the reliable sample, and its most frequently predicted label is the reliable label.

- Cluster-Level Label Correction aims to correct the noise at the cluster level, considering local relationship between point labels. Cluster-wisely, we count the occurrences of reliable labels for each class. Then we get a winner label by voting from the top reliable labels, and overwrite the labels within this cluster with it and iteratively correct the training set.

Results
- Qualitative results on artificial noisy data: results of our framework is more in line with clean GT.
- Quantitative results on artificial noisy data: our framework produces much better results than all baselines. Even on 60% noise, our results is comparable to trained completely clean dataset.
- Qualitative results on real-world noisy data: results of our framework is more reasonable than GT labels given by ScanNetV2 validation set.
- Quantitative results on real-world noisy data: our framework achieves significant performance gain.
- Visualization of the label correction process during training. The correction process spreads from large areas to small objects and to whole training set as the training proceeds.

Motivation
- To correct the instance-level label noise, we create a cluster-based noise correction method, since instance label may not be available.
- While noise rate is unknown, variant and possibly heavy for real-world noisy dataset, we design a novel noise-rate blind framework.
- To take neighbor point correlations into consideration and generate the best possible label, we propose a voting strategy.

Background and Introduction
- Clean 3D data labels are difficult to obtain because of massive point number and complex annotation process. Even the commonly used 3D scene dataset ScanNetV2 suffers from noisy label problem.
- Most noisy-robust works focus on image classification. And they are not applicable or suboptimal to apply on point segmentation.
- In this work, we take the lead in solving this issue by proposing a novel Point Noise-Adaptive Learning (PNAL) framework.

Problem Description
- Formally, we denote point cloud data as \(X \in \mathbb{R}^{N \times C} \) of \(N \) points with \(C \) features of coordinates and \(RGB \) values possibly, and its noisy semantic label as \(Y \), and \(M \) as the class number. Our target is to train a model \(f_{\theta}(X) \) robust to the label noise in the training set. Based on our observation and its official annotation pipeline of popular real-world dataset, label noise is mainly at instance level.

Highlight
- We are the first to investigate noisy label problem on point cloud data which has a wide and urgent need for 3D applications where the volume of data is growing drastically.
- A novel and effective noise-rate blind framework PNAL is proposed with point-level confidence selection and cluster-level label correction with voting mechanism.
- We refine the validation set of ScanNetV2 with more accurate labels to facilitate point segmentation and noisy label learning.

Code: https://github.com/pleaseconnectwifi/PNAL
- Computationally efficient implementation
- Dataset: https://shuquanye.com/PNAL_website/
- A re-labeled clean ScanNetV2 validation

Dataset:

- Code: ☑
- Training: Related: OA
- GT
- Qualitative: (PNAL)